Back to Search Start Over

Anomaly Detection Method for Unknown Protocols in a Power Plant ICS Network with Decision Tree.

Authors :
Lee, Kyoung-Mun
Cho, Min-Yang
Kim, Jung-Gu
Lee, Kyung-Ho
Source :
Applied Sciences (2076-3417); Apr2023, Vol. 13 Issue 7, p4203, 21p
Publication Year :
2023

Abstract

This study aimed to enhance the stability and security of power plant control network systems by developing detectable models using artificial intelligence machine learning techniques. Due to the closed system operation policy of facility manufacturers, it is challenging to detect and respond to security threats using standard security systems. With the increasing digitization of control systems, the risk of external malware penetration is also on the rise. To address this, machine learning techniques were applied to extract patterns from network traffic data produced at an average of 6.5 TB per month, and fingerprinting was used to detect unregistered terminals accessing the control network. By setting a threshold between transmission amounts and attempts using one month of data, an anomaly judgment model was learned to define patterns of data communication between the origin and destination. The hypothesis was tested using machine learning techniques if a new pattern occurred and no traffic occurred. The study confirmed that this method can be applied to not only plant control systems but also closed-structured control networks, where availability is critical, and other industries that use large amounts of traffic data. Experimental results showed that the proposed model outperformed existing models in terms of detection efficiency and processing time. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
13
Issue :
7
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
163038088
Full Text :
https://doi.org/10.3390/app13074203