Back to Search Start Over

A Power Allocation Scheme for MIMO-NOMA and D2D Vehicular Edge Computing Based on Decentralized DRL.

Authors :
Long, Dunxing
Wu, Qiong
Fan, Qiang
Fan, Pingyi
Li, Zhengquan
Fan, Jing
Source :
Sensors (14248220); Apr2023, Vol. 23 Issue 7, p3449, 19p
Publication Year :
2023

Abstract

In vehicular edge computing (VEC), some tasks can be processed either locally or on the mobile edge computing (MEC) server at a base station (BS) or a nearby vehicle. In fact, tasks are offloaded or not, based on the status of vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication. In this paper, device-to-device (D2D)-based V2V communication and multiple-input multiple-output and nonorthogonal multiple access (MIMO-NOMA)-based V2I communication are considered. In actual communication scenarios, the channel conditions for MIMO-NOMA-based V2I communication are uncertain, and the task arrival is random, leading to a highly complex environment for VEC systems. To solve this problem, we propose a power allocation scheme based on decentralized deep reinforcement learning (DRL). Since the action space is continuous, we employ the deep deterministic policy gradient (DDPG) algorithm to obtain the optimal policy. Extensive experiments demonstrate that our proposed approach with DRL and DDPG outperforms existing greedy strategies in terms of power consumption and reward. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
23
Issue :
7
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
163037594
Full Text :
https://doi.org/10.3390/s23073449