Back to Search Start Over

Crystal structure of a highly conserved enteroviral 5′ cloverleaf RNA replication element.

Authors :
Das, Naba K.
Hollmann, Nele M.
Vogt, Jeff
Sevdalis, Spiridon E.
Banna, Hasan A.
Ojha, Manju
Koirala, Deepak
Source :
Nature Communications; 4/8/2023, Vol. 14 Issue 1, p1-14, 14p
Publication Year :
2023

Abstract

The extreme 5′-end of the enterovirus RNA genome contains a conserved cloverleaf-like domain that recruits 3CD and PCBP proteins required for initiating genome replication. Here, we report the crystal structure at 1.9 Å resolution of this domain from the CVB3 genome in complex with an antibody chaperone. The RNA folds into an antiparallel H-type four-way junction comprising four subdomains with co-axially stacked sA-sD and sB-sC helices. Long-range interactions between a conserved A40 in the sC-loop and Py-Py helix within the sD subdomain organize near-parallel orientations of the sA-sB and sC-sD helices. Our NMR studies confirm that these long-range interactions occur in solution and without the chaperone. The phylogenetic analyses indicate that our crystal structure represents a conserved architecture of enteroviral cloverleaf-like domains, including the A40 and Py-Py interactions. The protein binding studies further suggest that the H-shape architecture provides a ready-made platform to recruit 3CD and PCBP2 for viral replication. A cloverleaf-like RNA domain within the enterovirus genome is essential for replication. Here, the authors determine the 1.9 Å resolution crystal structure of such RNA from coxsackievirus B3 – a model enterovirus to study many other human viruses. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
162970181
Full Text :
https://doi.org/10.1038/s41467-023-37658-8