Back to Search
Start Over
Quantum Particle Swarm Optimization with Deep Learning-Based Arabic Tweets Sentiment Analysis.
- Source :
- Computers, Materials & Continua; 2023, Vol. 75 Issue 2, p2575-2591, 17p
- Publication Year :
- 2023
-
Abstract
- Sentiment Analysis (SA), a Machine Learning (ML) technique, is often applied in the literature. The SA technique is specifically applied to the data collected from social media sites. The research studies conducted earlier upon the SA of the tweets were mostly aimed at automating the feature extraction process. In this background, the current study introduces a novel method called Quantum Particle Swarm Optimization with Deep Learning-Based Sentiment Analysis on Arabic Tweets (QPSODL-SAAT). The presented QPSODL-SAAT model determines and classifies the sentiments of the tweets written in Arabic. Initially, the data pre-processing is performed to convert the raw tweets into a useful format. Then, the word2vec model is applied to generate the feature vectors. The Bidirectional Gated Recurrent Unit (BiGRU) classifier is utilized to identify and classify the sentiments. Finally, the QPSO algorithm is exploited for the optimal finetuning of the hyperparameters involved in the BiGRU model. The proposed QPSODL-SAAT model was experimentally validated using the standard datasets. An extensive comparative analysis was conducted, and the proposed model achieved a maximum accuracy of 98.35%. The outcomes confirmed the supremacy of the proposed QPSODL-SAAT model over the rest of the approaches, such as the Surface Features (SF), Generic Embeddings (GE), Arabic Sentiment Embeddings constructed using the Hybrid (ASEH) model and the Bidirectional Encoder Representations from Transformers (BERT) model. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 15462218
- Volume :
- 75
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Computers, Materials & Continua
- Publication Type :
- Academic Journal
- Accession number :
- 162963121
- Full Text :
- https://doi.org/10.32604/cmc.2023.033531