Back to Search Start Over

Interphase Engineering for Stabilizing Ni‐Rich Cathode in Lithium‐Ion Batteries by a Nucleophilic Reaction‐Based Additive.

Authors :
Zheng, Wei‐Chen
Huang, Zheng
Shi, Chen‐Guang
Deng, Yaping
Wen, Zi‐Hao
Li, Zhen
Chen, Hui
Chen, Zhongwei
Huang, Ling
Sun, Shi‐Gang
Source :
ChemSusChem; 4/6/2023, Vol. 16 Issue 7, p1-9, 9p
Publication Year :
2023

Abstract

Ni‐rich cathode materials are considered promising candidates for next‐generation lithium‐ion batteries because of their high energy density and low cost. However, interphase failure at the surface of Ni‐rich cathodes negatively impacts cycling performance, making it challenging to meet the requirements of long‐term applications. In this study, a strategy is developed to improve interphase properties through introduction of a nucleophilic reaction‐based additive, using an appropriate amount of the inducer lithium isopropoxide (LIP) in the commercial electrolyte to achieve long‐term cycling stability of Li||LiNi0.83Co0.11Mn0.06O2 (NCM83) cells. This strategy enables Li||NCM83 cells to maintain a capacity of 148.7 mAh g−1 with a retention of 83.3 % even after 500 cycles. This outstanding cycling stability is attributed to a robust cathode‐electrolyte interphase (CEI) constructed on NCM83 surface LIP‐induce ring‐opening polymerization of ethylene carbonate (EC). As a result, the organic‐inorganic components of the CEI effectively constrain gas evolution and the corresponding phase transformation behavior. Furthermore, the CEI also suppresses microcrack formation and eventually sustains the Ni valence and coordination environment at high voltage. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18645631
Volume :
16
Issue :
7
Database :
Complementary Index
Journal :
ChemSusChem
Publication Type :
Academic Journal
Accession number :
162942191
Full Text :
https://doi.org/10.1002/cssc.202202252