Back to Search Start Over

Ultra-High-Molecular-Weight Polyethylene in Hip and Knee Arthroplasties.

Authors :
Hasegawa, Masahiro
Tone, Shine
Naito, Yohei
Sudo, Akihiro
Source :
Materials (1996-1944); Mar2023, Vol. 16 Issue 6, p2140, 17p
Publication Year :
2023

Abstract

Ultra-high-molecular-weight polyethylene (UHMWPE) wear and particle-induced osteolysis contribute to the failure of total hip arthroplasty (THA) and total knee arthroplasty (TKA). Highly crosslinked polyethylene (HXLPE) was developed in the late 1990s to reduce wear and has shown lower wear rates and loosening than conventional UHMWPE in THA. The irradiation dose for crosslinking is up to 100 kGy. However, during crosslinking, free radical formation induces oxidation. Using HXLPE in THA, the cumulative revision rate was determined to be significantly lower (6.2%) than that with conventional UHMWPE (11.7%) at a mean follow-up of 16 years, according to the Australian Orthopaedic Association National Joint Replacement Registry. However, HXLPE does not confer to TKA the same advantages it confers to THA. Several alternatives have been developed to prevent the release of free radicals and improve polymer mechanical properties, such as thermal treatment, phospholipid polymer 2-methacryloyloxyethyl phosphorylcholine grafting, remelting, and vitamin E addition. Among these options, vitamin E addition has reported good clinical results and wear resistance similar to that of HXLPE without vitamin E, as shown by short-term clinical studies of THA and TKA. This review aims to provide a comprehensive overview of the development and performance of UHMWPE in THA and TKA. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
16
Issue :
6
Database :
Complementary Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
162834887
Full Text :
https://doi.org/10.3390/ma16062140