Back to Search
Start Over
Size Effect on the Thermal Conductivity of a Type-I Clathrate.
- Source :
- Crystals (2073-4352); Mar2023, Vol. 13 Issue 3, p453, 11p
- Publication Year :
- 2023
-
Abstract
- Clathrates are a materials class with an extremely low phonon thermal conductivity, which is a key ingredient for a high thermoelectric conversion efficiency. Here, we present a study on the type-I clathrate La 1.2 Ba 6.8 Au 5.8 Si 38.8 □ 1.4 directed at lowering the phonon thermal conductivity even further by forming mesoscopic wires out of it. Our hypothesis is that the interaction of the low-energy rattling modes of the guest atoms (La and Ba) with the acoustic modes, which originate mainly from the type-I clathrate framework (formed by Au and Si atoms, with some vacancies □), cuts off their dispersion and thereby tilts the balance of phonons relevant for thermal transport to long-wavelength ones. Thus, size effects are expected to set in at relatively long length scales. The structuring was carried out using a top-down approach, where the wires, ranging from 1260 nm to 630 nm in diameter, were cut from a piece of single crystal using a focused ion beam technique. Measurements of the thermal conductivity were performed with a self-heating 3 ω technique down to 80 K. Indeed, they reveal a reduction of the room-temperature phonon thermal conductivity by a sizable fraction of ∼40 % for our thinnest wire, thereby confirming our hypothesis. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20734352
- Volume :
- 13
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Crystals (2073-4352)
- Publication Type :
- Academic Journal
- Accession number :
- 162749411
- Full Text :
- https://doi.org/10.3390/cryst13030453