Back to Search Start Over

Active Optics and Aberration Correction Technology for Sparse Aperture Segmented Mirrors.

Authors :
Zhang, Benlei
Yang, Fei
Wang, Fuguo
Lu, Baowei
Source :
Applied Sciences (2076-3417); Mar2023, Vol. 13 Issue 6, p4063, 17p
Publication Year :
2023

Abstract

Active optics and aberration correction techniques for sparse aperture segmented mirrors are studied. A finite element model of the sparse aperture segmented mirror was established, and a multi-aperture aberration polynomial was derived. According to the hard spot theorem, a co-phase maintenance method based on the change of the edge sensor position in the conventional mode is derived. And a co-phase maintenance method based on the change of the aberration of the segmented mirror surface without the participation of the edge sensor is proposed. The method can correct aberrations of the segmented mirror surface, which are caused by the rigid body displacement along the horizontal direction of the segments. This method can reduce the RMS of the segmented mirror surface to 2.2 nm. The correction principle of the Warping Harness (WH) technique is derived. For the problems of tedious steps and a small number of target aberrations, the correction method is proposed to directly target the aberrations of the segmented mirrors, which is simple and has a wider range of target aberrations. Using this method, the amplitude of each aberration of the stitched mirror is corrected to below 10 − 4 nm . It is also verified that combining the generalized ridge estimation method and the differential evolution algorithm can effectively solve the correction quantity. Finally, it is verified that the SiC material can effectively improve the adaptability of the segmented mirror to gravity load by reducing the mirror's weight. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
13
Issue :
6
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
162725287
Full Text :
https://doi.org/10.3390/app13064063