Back to Search Start Over

Direct free energy evaluation of classical and quantum many-body systems via field-theoretic simulation.

Authors :
Fredrickson, Glenn H.
Delaney, Kris T.
Source :
Proceedings of the National Academy of Sciences of the United States of America; 5/3/2022, Vol. 119 Issue 18, p1-8, 13p
Publication Year :
2022

Abstract

Free energy evaluation in molecular simulations of both classical and quantum systems is computationally intensive and requires sophisticated algorithms. This is because free energy depends on the volume of accessible phase space, a quantity that is inextricably linked to the integration measure in a coordinate representation of a many-body problem. In contrast, the same problem expressed as a field theory (auxiliary field or coherent states) isolates the particle number as a simple parameter in the Hamiltonian or action functional and enables the identification of a chemical potential field operator. We show that this feature leads a “direct” method of free energy evaluation, in which a particle model is converted to a field theory and appropriate field operators are averaged using a field-theoretic simulation conducted with complex Langevin sampling. These averages provide an immediate estimate of the Helmholtz free energy in the canonical ensemble and the entropy in the microcanonical ensemble. The method is illustrated for a classical polymer solution, a block copolymer melt exhibiting liquid crystalline and solid mesophases, and a quantum fluid of interacting bosons. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
119
Issue :
18
Database :
Complementary Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
162445020
Full Text :
https://doi.org/10.1073/pnas.2201804119