Back to Search Start Over

Tribo-Mechanical Behavior of Films and Modified Layers Produced by Cathodic Cage and Glow Discharge Plasma Nitriding Techniques.

Authors :
Schibicheski Kurelo, Bruna C. E.
De Souza, Gelson Biscaia
Da Silva, Silvio Luiz Rutz
Lepienski, Carlos Maurício
Alves Júnior, Clodomiro
Chuproski, Rafael Fillus
Pintaúde, Giuseppe
Source :
Metals (2075-4701); Feb2023, Vol. 13 Issue 2, p430, 19p
Publication Year :
2023

Abstract

Two surface modification techniques, the glow discharge plasma nitriding (GDPN) and the cathodic cage plasma nitriding (CCPN), were compared regarding the mechanical and tribological behavior of layers produced on AISI 316 stainless-steel surfaces. The analyses were carried out at the micro/nanoscale using nanoindentation and nanoscratch tests. The nitriding temperature (°C) and time (h) parameters were 350/6, 400/6, and 450/6. Morphology, structure, and microstructure were evaluated by X-ray diffraction, scanning electron and optical interferometry microscopies, and energy-dispersive X-ray spectroscopy. GDPN results in stratified modified surfaces, solidly integrated with the substrate, with a temperature-dependent composition comprising nitrides (γ'-Fe<subscript>4</subscript>N, ε-Fe<subscript>2+x</subscript>N, CrN) and N-solid solution (γ<subscript>N</subscript> phase). The latter prevails for the low treatment temperatures. Hardness increases from ~2.5 GPa (bare surface) to ~15.5 GPa (450 °C). The scratch resistance of the GDPN-modified surfaces presents a strong correlation with the layer composition and thickness, with the result that the 400 °C condition exhibits the highest standards against microwear. In contrast, CCPN results in well-defined dual-layers for any of the temperatures. A top 0.3–0.8 µm-thick nitride film (most ε-phase), brittle and easily removable under scratch with loads as low as 63 mN, covers a γ<subscript>N</subscript>-rich case with hardness of 10 GPa. The thickness of the underneath CCPN layer produced at 450 °C is similar to that from GDPN at 400 °C (3 µm); on the other hand, the average roughness is much lower, comparable to the reference surface (Ra ~10 nm), while the layer formation involves no chromium depletion. Moreover, edge effects are absent across the entire sample´s surface. In conclusion, among the studied conditions, the GDPN 400 °C disclosed the best tribo-mechanical performance, whereas CCPN resulted in superior surface finishing for application purposes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20754701
Volume :
13
Issue :
2
Database :
Complementary Index
Journal :
Metals (2075-4701)
Publication Type :
Academic Journal
Accession number :
162388747
Full Text :
https://doi.org/10.3390/met13020430