Back to Search
Start Over
Research on Automatic Recognition Method of Artificial Ground Target Based on Improved HED.
- Source :
- Applied Sciences (2076-3417); Mar2023, Vol. 13 Issue 5, p3163, 15p
- Publication Year :
- 2023
-
Abstract
- Automatic target recognition technology is an important research direction in the field of machine vision. Artificial ground targets, such as bridges, airports and houses, are mostly composed of straight lines. The ratio of geometric primitive lines to the triangle area formed by their combination is used as the feature quantity to describe the group of lines, so as to characterize the artificial ground target. In view of the shortcomings of traditional edge detection methods, such as background suppression, non-prominent targets, missing positions, etc., this paper proposed an image edge detection method based on depth learning. By combining the traditional edge detection algorithm with the edge detection algorithm based on an improved HED network, the real-time target image edge detection was completed. An automatic target recognition method based on template matching was proposed. This method solved the problem of both homologous template matching and heterogeneous template matching, which has important theoretical value. First, the lines were combined to form the geometric primitives of the line group, and then the relationship of the lines in the group was determined by using the characteristic quantity of the line group. The best line group matching the target template was found in the image edge, and the homonymous points in the real-time image and the target template were calculated. The affine transformation matrix between the two images was obtained according to the homonymous points, and then the accurate position of the target in the real-time image was found. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20763417
- Volume :
- 13
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- Applied Sciences (2076-3417)
- Publication Type :
- Academic Journal
- Accession number :
- 162350359
- Full Text :
- https://doi.org/10.3390/app13053163