Back to Search Start Over

Brownian Motion Simulation for Estimating Chloride Diffusivity of Cement Paste.

Authors :
Zhang, Congyan
Li, Xiang
Chen, Feng
Wang, Xudong
Zheng, Jianjun
Source :
Materials (1996-1944); Mar2023, Vol. 16 Issue 5, p2002, 13p
Publication Year :
2023

Abstract

Chloride ion diffusion properties are important factors that affect the durability of cementitious materials. Researchers have conducted much exploration in this field, both experimentally and theoretically. Numerical simulation techniques have been greatly improved as theoretical methods and testing techniques have been updated. Researchers have modeled cement particles mostly as circular shapes, simulated the diffusion of chloride ions, and derived chloride ion diffusion coefficients in two-dimensional models. In this paper, a three-dimensional random walk method based on Brownian motion is employed to evaluate the chloride ion diffusivity of cement paste with the use of numerical simulation techniques. Unlike previous simplified two-dimensional or three-dimensional models with restricted walks, this is a true three-dimensional simulation technique that can visually represent the cement hydration process and the diffusion behavior of chloride ions in cement paste. During the simulation, the cement particles were reduced to spheres, which were randomly distributed in a simulation cell with periodic boundary conditions. Brownian particles were then dropped into the cell and permanently captured if their initial position in the gel fell. Otherwise, a sphere tangential to the nearest cement particle was constructed, with the initial position as the center. Then, the Brownian particles randomly jumped to the surface of this sphere. The process was repeated to derive the average arrival time. In addition, the diffusion coefficient of chloride ions was deduced. The effectiveness of the method was also tentatively confirmed by the experimental data. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
16
Issue :
5
Database :
Complementary Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
162349818
Full Text :
https://doi.org/10.3390/ma16052002