Back to Search Start Over

Rumen Fermentation Parameters Prediction Model for Dairy Cows Using a Stacking Ensemble Learning Method.

Authors :
Wang, Yuxuan
Zhou, Jianzhao
Wang, Xinjie
Yu, Qingyuan
Sun, Yukun
Li, Yang
Zhang, Yonggen
Shen, Weizheng
Wei, Xiaoli
Source :
Animals (2076-2615); Feb2023, Vol. 13 Issue 4, p678, 13p
Publication Year :
2023

Abstract

Simple Summary: Methane and volatile fatty acids are important products of rumen fermentation in dairy cows. Quantitative research on them is of great significance for environmental protection and animal production. The aim of this study was to develop a prediction model using the stacking ensemble learning method and predict the production of rumen fermentation products based on the nutrient level of the diet. The results show that the stacking model has good performance in terms of prediction accuracy. The model proposed in this study can be used as a guideline to optimize diet compositions and improve feeding efficiency. Volatile fatty acids (VFAs) and methane are the main products of rumen fermentation. Quantitative studies of rumen fermentation parameters can be performed using in vitro techniques and machine learning methods. The currently proposed models suffer from poor generalization ability due to the small number of samples. In this study, a prediction model for rumen fermentation parameters (methane, acetic acid (AA), and propionic acid (PA)) of dairy cows is established using the stacking ensemble learning method and in vitro techniques. Four factors related to the nutrient level of total mixed rations (TMRs) are selected as inputs to the model: neutral detergent fiber (NDF), acid detergent fiber (ADF), crude protein (CP), and dry matter (DM). The comparison of the prediction results of the stacking model and base learners shows that the stacking ensemble learning method has better prediction results for rumen methane (coefficient of determination ( R 2 ) = 0.928, root mean square error (RMSE) = 0.968 mL/g), AA ( R 2 = 0.888, RMSE = 1.975 mmol/L) and PA ( R 2 = 0.924, RMSE = 0.74 mmol/L). And the stacking model simulates the variation of methane and VFAs in relation to the dietary fiber content. To demonstrate the robustness of the model in the case of small samples, an independent validation experiment was conducted. The stacking model successfully simulated the transition of rumen fermentation type and the change of methane content under different concentrate-to-forage (C:F) ratios of TMR. These results suggest that the rumen fermentation parameter prediction model can be used as a decision-making basis for the optimization of dairy cow diet compositions, rapid screening of methane emission reduction, feed beneficial to dairy cow health, and improvement of feed utilization. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20762615
Volume :
13
Issue :
4
Database :
Complementary Index
Journal :
Animals (2076-2615)
Publication Type :
Academic Journal
Accession number :
162087328
Full Text :
https://doi.org/10.3390/ani13040678