Back to Search Start Over

Investigation into Viscoelastic Properties of Fiber-Reinforced Asphalt Composite Concrete Based on the Burgers Model.

Authors :
Huang, Chunshui
Gao, Danying
Meng, Tong
Yang, Changde
Source :
Buildings (2075-5309); Feb2023, Vol. 13 Issue 2, p449, 14p
Publication Year :
2023

Abstract

Asphalt composite concrete pavement is one of the common pavement forms in China. However, due to the influence of design, materials, construction quality, and other aspects, asphalt composite concrete pavement develops various degrees of cracks after being put into use, which affects the service performance and life of asphalt pavement. The Burgers model is used to examine the effects of fiber-volume-fraction and length–diameter-ratio on the viscoelastic mechanical behavior model parameters and viscoelastic properties of asphalt composite concrete through the bend test for creep of polyester fiber asphalt composite concrete beam. The findings indicate that the fiber's ability to control asphalt composite concrete bending creep deformation increases initially and subsequently diminishes as fiber-volume-fraction and length–diameter-ratio increase. Fiber-volume-fraction and length–diameter-ratio effects can be fully reflected by fiber amount characteristics. A viscoelastic mechanical behavior model of fiber-reinforced asphalt composite concrete is developed on this foundation while taking into account the influence of fiber amount characteristic factors. Theoretical study and practical research indicate that the ideal fiber volume ratio of polyester fiber asphalt composite concrete is 0.35 percent, the ideal length-to-diameter ratio is 324, and the ideal fiber amount characteristic parameter is 1.13. The test results can provide a certain reference value for the improvement of the long-term durability of fiber asphalt composite concrete pavement of road engineering. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20755309
Volume :
13
Issue :
2
Database :
Complementary Index
Journal :
Buildings (2075-5309)
Publication Type :
Academic Journal
Accession number :
162083789
Full Text :
https://doi.org/10.3390/buildings13020449