Back to Search Start Over

Acoustic Emission Characteristics and Damage Evolution of Sandstone with Different Pores under External Load.

Authors :
Wang, Wencai
Li, Junpeng
Wang, Chuangye
Pei, Zhenyu
Source :
Advances in Civil Engineering; 2/20/2023, p1-13, 13p
Publication Year :
2023

Abstract

The rock will be damaged and destroyed when the external load reaches the bearing limit, which will be accompanied by complex AE signals and damage evolution laws. Therefore, in order to obtain the relationship between AE signal and damage evolution characteristics of rocks, 4 kinds of sandstones of a mine are used for AE test. Firstly, the porosity of 4 kinds of sandstone is tested. Secondly, the AE signal parameter characteristics of sandstone with different porosity are analyzed. Finally, the AE parameters obtained are combined with cellular automata and damage theory to analyze the damage evolution law and critical damage value of different sandstones. The results show that the pore size of the four sandstones is QSY<subscript>X</subscript> > QSY<subscript>Z</subscript> > FSY<subscript>X</subscript> > FSY<subscript>Z</subscript>. The loading process is divided into compaction stage, elastic deformation stage, and plastic deformation stage, with peak strengths of 46.92 MPa, 43.32 MPa, 57.87 MPa, and 54.31 MPa, respectively. Or the AE event rate, the missing area, missing parts and missing number are different. The QSY<subscript>X</subscript> missing area is larger than QSY<subscript>Z</subscript> and FSY<subscript>Z</subscript>; the macrocrack growth speed is also faster; and the signs of fracture are obvious. The number of FSY<subscript>X</subscript> missing is more than QSY<subscript>X</subscript>, QSY<subscript>Z</subscript>, and FSY<subscript>Z</subscript>. The first two missing parts are caused by internal defects; the last two missing parts are signs of fracture; QSY<subscript>X</subscript>, QSY<subscript>Z</subscript>, and FSY<subscript>Z</subscript> are shear failure, and FSY<subscript>X</subscript> is tensile failure. The damage evolution process of the four sandstones corresponds to the loading process one by one. The calm stage of damage corresponds to the compaction stage, the damage expansion stage corresponds to the elastic deformation stage, and the damage acceleration stage corresponds to the plastic deformation stage. The critical damage values are 0.438, 0.499, 0.576, and 0.476, respectively, which are higher than the critical damage values of the sandstone cell model of 0.43, indicating that when the damage values reach the critical value, instability exists and instability failure will occur with continuous load. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16878086
Database :
Complementary Index
Journal :
Advances in Civil Engineering
Publication Type :
Academic Journal
Accession number :
161986911
Full Text :
https://doi.org/10.1155/2023/8903428