Back to Search Start Over

Anomaly Detection Method for Multivariate Time Series Data of Oil and Gas Stations Based on Digital Twin and MTAD-GAN.

Authors :
Lian, Yuanfeng
Geng, Yueyao
Tian, Tian
Source :
Applied Sciences (2076-3417); Feb2023, Vol. 13 Issue 3, p1891, 19p
Publication Year :
2023

Abstract

Due to the complexity of the oil and gas station system, the operational data, with various temporal dependencies and inter-metric dependencies, has the characteristics of diverse patterns, variable working conditions and imbalance, which brings great challenges to multivariate time series anomaly detection. Moreover, the time-series reconstruction information of data from digital twin space can be used to identify and interpret anomalies. Therefore, this paper proposes a digital twin-driven MTAD-GAN (Multivariate Time Series Data Anomaly Detection with GAN) oil and gas station anomaly detection method. Firstly, the operational framework consisting of digital twin model, virtual-real synchronization algorithm, anomaly detection strategy and realistic station is constructed, and an efficient virtual-real mapping is achieved by embedding a stochastic Petri net (SPN) to describe the station-operating logic of behavior. Secondly, based on the potential correlation and complementarity among time series variables, we present a MTAD-GAN anomaly detection method to reconstruct the error of multivariate time series by combining mechanism of knowledge graph attention and temporal Hawkes attention to judge the abnormal samples by a given threshold. The experimental results show that the digital twin-driven anomaly detection method can achieve accurate identification of anomalous data with complex patterns, and the performance of MTAD-GAN anomaly detection is improved by about 2.6% compared with other methods based on machine learning and deep learning, which proves the effectiveness of the method. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
13
Issue :
3
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
161819666
Full Text :
https://doi.org/10.3390/app13031891