Back to Search Start Over

Heat and mass transfer of MHD Jeffrey nanofluid flow through a porous media past an inclined plate with chemical reaction, radiation, and Soret effects.

Authors :
Haritha, A.
Vishali, B.
Venkata Lakshmi, C.
Source :
Heat Transfer; Mar2023, Vol. 52 Issue 2, p1178-1197, 20p
Publication Year :
2023

Abstract

This paper investigates the heat and mass transfer of an unsteady, magnetohydrodynamic incompressible water‐based nanofluid (Cu and TiO2) flow over a stretching sheet in a transverse magnetic field with thermal radiation Soret effects in the presence of heat source and chemical reaction. The governing differential equations are transformed into a set of nonlinear ordinary differential equations and solved using a regular perturbation technique with appropriate boundary conditions for various physical parameters. The effects of different physical parameters on the dimensionless velocity, temperature, and concentration profiles are depicted graphically and analyzed in detail. Finally, numerical values of the physical quantities, such as the local skin‐friction coefficient, the Nusselt number, and the Sherwood number, are presented in tabular form. It is concluded that the resultant velocity reduces with increasing Jeffrey parameter and magnetic field parameter. Results describe that the velocity and temperature diminish with enhancing the thermal radiation. Both velocity and concentration are enhanced with increases of the Soret parameter. Also, it is noticed that the solutal boundary layer thickness decreases with an increase in chemical reaction parameters. This is because chemical molecular diffusivity reduces for higher values of chemical reaction parameter. Also, water‐based TiO2 nanofluids possess higher velocity than water‐based Cu nanofluids. Comparisons with previously published work performed and the results are found to be in excellent agreement. This fluid flow model has several industrial applications in the field of chemical, polymer, medical science, and so forth. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
26884534
Volume :
52
Issue :
2
Database :
Complementary Index
Journal :
Heat Transfer
Publication Type :
Academic Journal
Accession number :
161619364
Full Text :
https://doi.org/10.1002/htj.22735