Back to Search
Start Over
The Neuron Navigators: Structure, function, and evolutionary history.
- Source :
- Frontiers in Molecular Neuroscience; 1/12/2023, Vol. 15, p1-20, 20p
- Publication Year :
- 2023
-
Abstract
- Neuron navigators (Navigators) are cytoskeletal-associated proteins important for neuron migration, neurite growth, and axon guidance, but they also function more widely in other tissues. Recent studies have revealed novel cellular functions of Navigators such as macropinocytosis, and have implicated Navigators in human disorders of axon growth. Navigators are present in most or all bilaterian animals: vertebrates have three Navigators (NAV1-3), Drosophila has one (Sickie), and Caenorhabditis elegans has one (Unc-53). Structurally, Navigators have conserved N- and C-terminal regions each containing specific domains. The N-terminal region contains a calponin homology (CH) domain and one or more SxIP motifs, thought to interact with the actin cytoskeleton and mediate localization to microtubule plus-end binding proteins, respectively. The C-terminal region contains two coiled-coil domains, followed by a AAA+ family nucleoside triphosphatase domain of unknown activity. The Navigators appear to have evolved by fusion of N- and C-terminal region homologs present in simpler organisms. Overall, Navigators participate in the cytoskeletal response to extracellular cues via microtubules and actin filaments, in conjunction with membrane trafficking. We propose that uptake of fluid-phase cues and nutrients and/or downregulation of cell surface receptors could represent general mechanisms that explain Navigator functions. Future studies developing new models, such as conditional knockout mice or human cerebral organoids may reveal new insights into Navigator function. Importantly, further biochemical studies are needed to define the activities of the Navigator AAA+ domain, and to study potential interactions among different Navigators and their binding partners. [ABSTRACT FROM AUTHOR]
- Subjects :
- CELL receptors
NUCLEOSIDE triphosphatase
EXPLORERS
CYTOSKELETON
CELL physiology
Subjects
Details
- Language :
- English
- ISSN :
- 16625099
- Volume :
- 15
- Database :
- Complementary Index
- Journal :
- Frontiers in Molecular Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- 161539698
- Full Text :
- https://doi.org/10.3389/fnmol.2022.1099554