Back to Search Start Over

Unsupervised SAR Image Change Detection Based on Histogram Fitting Error Minimization and Convolutional Neural Network.

Authors :
Zhang, Kaiyu
Lv, Xiaolei
Guo, Bin
Chai, Huiming
Source :
Remote Sensing; Jan2023, Vol. 15 Issue 2, p470, 25p
Publication Year :
2023

Abstract

Synthetic aperture radar (SAR) image change detection is one of the most important applications in remote sensing. Before performing change detection, the original SAR image is often cropped to extract the region of interest (ROI). However, the size of the ROI often affects the change detection results. Therefore, it is necessary to detect changes using local information. This paper proposes a novel unsupervised change detection framework based on deep learning. The specific method steps are described as follows: First, we use histogram fitting error minimization (HFEM) to perform thresholding for a difference image (DI). Then, the DI is fed into a convolutional neural network (CNN). Therefore, the proposed method is called HFEM-CNN. We test three different CNN architectures called Unet, PSPNet and the designed fully convolutional neural network (FCNN) for the framework. The overall loss function is a weighted average of pixel loss and neighborhood loss. The weight between pixel loss and neighborhood loss is determined by the manually set parameter λ. Compared to other recently proposed methods, HFEM-CNN does not need a fragment removal procedure as post-processing. This paper conducts experiments for water and building change detection on three datasets. The experiments are divided into two parts: whole data experiments and random cropped data experiments. The complete experiments prove that the performance of the method in this paper is close to other methods on complete datasets. The random cropped data experiment is to perform local change detection using patches cropped from the whole datasets. The proposed method is slightly better than traditional methods in the whole data experiments. In experiments with randomly cropped data, the average kappa coefficient of our method on 63 patches is over 3.16% compared to other methods. Experiments also show that the proposed method is suitable for local change detection and robust to randomness and choice of hyperparameters. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
2
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
161479484
Full Text :
https://doi.org/10.3390/rs15020470