Back to Search Start Over

An ADMM-qSPICE-Based Sparse DOA Estimation Method for MIMO Radar.

Authors :
Zhang, Yongwei
Zhang, Yongchao
Luo, Jiawei
Huang, Yulin
Yan, Jianan
Zhang, Yin
Yang, Jianyu
Source :
Remote Sensing; Jan2023, Vol. 15 Issue 2, p446, 19p
Publication Year :
2023

Abstract

In recent years, sparse direction-of-arrival (DOA) estimation for multiple-input multiple-output (MIMO) radar has attracted extensive attention and been extensively studied, especially the method based on the classic least absolute shrinkage and selection operator (LASSO) estimator. The alternating-direction method of multipliers (ADMM) is an effective method for solving this problem at the cost of introducing an additional user parameter. To avoid introducing an additional user parameter, this paper adopts an equivalent transformation in the form of the generalized SParse Iterative Covariance-based Estimation (qSPICE) cost function to obtain a mean squared minimized form of the cost function. Then, the problem is transformed into a sparse optimization problem in the form of a weighted LASSO. Next, this unconstrained optimization problem is decomposed into three subproblems, which are solved separately to reduce the dimension of each problem and thus reduce the overall computational complexity based on ADMM. Simulation results and measured data indicate that the proposed method significantly outperforms the traditional super-resolution DOA estimation method and ADMM-LASSO method and slightly outperforms qSPICE in terms of resolution and sidelobe suppression capability. In addition, the proposed method has a much lower computational complexity and substantially fewer iterations than qSPICE. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
2
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
161479460
Full Text :
https://doi.org/10.3390/rs15020446