Back to Search
Start Over
OsCERK1 Contributes to Cupric Oxide Nanoparticles Induced Phytotoxicity and Basal Resistance against Blast by Regulating the Anti-Oxidant System in Rice.
- Source :
- Journal of Fungi; Jan2023, Vol. 9 Issue 1, p36, 14p
- Publication Year :
- 2023
-
Abstract
- CuO NPs (cupric oxide nanoparticles) are widely used in various fields due to their high electrical conductivity, electronic correlation effect, and special physical property. Notably, CuO NPs have good application prospects in agricultural production because of its antifungal activity to prevent crop diseases. However, the increasing release of CuO NPs into the environment has resulted in a serious threat to the ecosystem, including plants. Previous studies have reported the toxicity of CuO NPs on rice, but little is known about the underlying molecular mechanisms or specific genes involved in the response to CuO NPs. In this study, we found that the rice well-known receptor Chitin Elicitor Receptor Kinase 1 (OsCERK1), which is essential for basal resistance against pathogens, is involved in CuO NPs stress in rice. Knockout of OsCERK1 gene resulted in enhanced tolerance to CuO NPs stress. Furthermore, it was revealed that OsCERK1 reduces the tolerance to CuO NPs stress by regulating the anti-oxidant system and increasing the accumulation of H<subscript>2</subscript>O<subscript>2</subscript> in rice. In addition, CuO NPs treatment significantly enhances the basal resistance against M. oryzae which is mediated by OsCERK1. In conclusion, this study demonstrated a dual role of OsCERK1 in response to CuO NPs stress and M. oryzae infection by modulating ROS accumulation, which expands our understanding about the crosstalk between abiotic and biotic stresses. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 2309608X
- Volume :
- 9
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Journal of Fungi
- Publication Type :
- Academic Journal
- Accession number :
- 161476269
- Full Text :
- https://doi.org/10.3390/jof9010036