Back to Search
Start Over
Toward efficient hybrid solar cells comprising quantum dots and organic materials: progress, strategies, and perspectives.
- Source :
- Journal of Materials Chemistry A; 1/21/2023, Vol. 11 Issue 3, p1013-1038, 26p
- Publication Year :
- 2023
-
Abstract
- The emerging solution-processing photovoltaic technologies, e.g., quantum dot (QD) and organic solar cells, have witnessed unprecedented progress in the past decade. Nevertheless, both technologies have their own merits, holding promising potential to be leveraged for mutual win. Herein, a comprehensive and critical review of the state-of-the-art hybrid solar cells with three promising QDs (lead chalcogenide QDs, AgBiS<subscript>2</subscript> QDs, and perovskite QDs) is delivered with the goal of further enhancing their performance and stability for large-scale applications. Firstly, we discussed the working principles of hybrid solar cells and highlighted the combined support of various structures. Subsequently, QD passivation with organic ligands was further outlined, focusing on further enhancing the performance of QD solar cells. Then, there is an in-depth discussion on worldwide research efforts to enhance the performance and stability of hybrid devices, including bulk-heterojunction, bilayer, and tandem structures. Finally, the remaining open challenges and our insights are presented to offer promising research directions for further performance breakthrough. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20507488
- Volume :
- 11
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Journal of Materials Chemistry A
- Publication Type :
- Academic Journal
- Accession number :
- 161339322
- Full Text :
- https://doi.org/10.1039/d2ta07671c