Back to Search Start Over

Characterization of a novel deep-intronic variant in DYNC2H1 identified by whole-exome sequencing in a patient with a lethal form of a short-rib thoracic dysplasia type III.

Authors :
Buchh, Muqsit
Gillespie, Patrick J.
Treat, Kayla
Abreu, Marco A.
Schwantes-An, Tae-Hwi Linus
Helm, Benjamin M.
Fang Fang
Xiaoling Xuei
Mantcheva, Lili
Suhrie, Kristen R.
Graham, Brett H.
Conboy, Erin
Vetrini, Francesco
Source :
Cold Spring Harbor Molecular Case Studies; Dec2022, Vol. 8 Issue 7, p1-11, 11p
Publication Year :
2022

Abstract

Biallelic pathogenic variants in DYNC2H1 are the cause of short-rib thoracic dysplasia type III with or without polydactyly (OMIM #613091), a skeletal ciliopathy characterized by thoracic hypoplasia due to short ribs. In this report, we review the case of a patient who was admitted to the Neonatal Intensive Care Unit (NICU) of Indiana University Health (IUH) for respiratory support after experiencing respiratory distress secondary to a small, narrow chest causing restrictive lung disease. Additional phenotypic features include postaxial polydactyly, short proximal long bones, and ambiguous genitalia were noted. Exome sequencing (ES) revealed a maternally inherited likely pathogenic variant c.10322C > T p.(Leu3448Pro) in the DYNC2H1 gene. However, therewas no variant found on the paternal allele. Microarray analysis to detect deletion or duplication in DYNC2H1 was normal. Therefore, there was insufficient evidence to establish a molecular diagnosis. To further explore the data and perform additional investigations, the patient was subsequently enrolled in the Undiagnosed Rare Disease Clinic (URDC) at Indiana University School of Medicine (IUSM). The investigators at the URDC performed a reanalysis of the ES raw data, which revealed a paternally inherited DYNC2H1 deep-intronic variant c.10606-14A >Gpredicted to create a strong cryptic acceptor splice site. Additionally, the RNA sequencing of fibroblasts demonstrated partial intron retention predicted to cause a premature stop codon and nonsense- mediated mRNA decay (NMD). Droplet digital RT-PCR (RT-ddPCR) showed a drastic reduction by 74% of DYNCH2H1 mRNA levels. As a result, the intronic variant was subsequently reclassified as likely pathogenic resulting in a definitive clinical and genetic diagnosis for this patient. Reanalysis of ES and fibroblast mRNA experiments confirmed the pathogenicity of the splicing variants to supplement critical information not revealed in original ES or CMA reports. The NICU and URDC collaboration ended the diagnostic odyssey for this family; furthermore, its importance is emphasized by the possibility of prenatally diagnosing the mother's current pregnancy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23732873
Volume :
8
Issue :
7
Database :
Complementary Index
Journal :
Cold Spring Harbor Molecular Case Studies
Publication Type :
Academic Journal
Accession number :
161290261
Full Text :
https://doi.org/10.1101/mcs.a006254