Back to Search Start Over

Luteolin Attenuates APEC-Induced Oxidative Stress and Inflammation via Inhibiting the HMGB1/TLR4/NF-κB Signal Axis in the Ileum of Chicks.

Authors :
Cao, Zhanyou
Xing, Chenghong
Cheng, Xinyi
Luo, Junrong
Hu, Ruiming
Cao, Huabin
Guo, Xiaoquan
Yang, Fan
Zhuang, Yu
Hu, Guoliang
Source :
Animals (2076-2615); Jan2023, Vol. 13 Issue 1, p83, 12p
Publication Year :
2023

Abstract

Simple Summary: Avian colibacillosis is one of the major causes of animal death and egg-production decline, which has caused economic losses to the poultry industry. When encountering avian colibacillosis, many poultry farms tend to use antibiotics to reduce losses. Additionally, the utilization of antimicrobials is also disputable. Our study shows that luteolin can alleviate the inflammation and oxidative stress caused by Escherichia coli in the ilea of chicks and may be used as a substitute for antibiotics to control avian colibacillosis. Avian pathogenic E. coli (APEC) is typically the cause of avian colibacillosis, which can result in oxidative stress, inflammation, and intestinal damage (APEC). Luteolin, in the form of glycosylation flavone, has potent anti-inflammatory and anti-oxidative properties. However, its effects on APEC-induced intestinal oxidative stress and NF-κB-mediated inflammation in chicks remains poorly understood. After hatching, one-day-old chicks were stochastically assigned to four groups: a control group (basic diet), an E. coli group (basic diet) and L10 and L20 groups (with a dry matter of luteolin diet 10 mg/kg and 20 mg/kg, respectively), with fifteen chicks in each group and one repeat per group. They were pretreated for thirteen days. The body weight, mortality, histopathological changes in the ileum, antioxidant status, and the mRNA and protein-expression levels of factors associated with the HMGB1/TLR4/NF-κB signal axis of the chicks were measured. The results showed that luteolin treatment decreased the mRNA and protein-expression level of the related factors of HMGB1/TLR4/NF-κB signal axis in the ileum, reduced inflammation, increased antioxidant enzyme activity, and reduced intestinal injury. Collectively, luteolin alleviated APEC-induced intestinal damage by means of hindering the HMGB1/TLR4/NF-κB signal axis, which suggests that luteolin could be a good method for the prevention and treatment of avian colibacillosis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20762615
Volume :
13
Issue :
1
Database :
Complementary Index
Journal :
Animals (2076-2615)
Publication Type :
Academic Journal
Accession number :
161190183
Full Text :
https://doi.org/10.3390/ani13010083