Back to Search Start Over

Hyperspectral Feature Selection for SOM Prediction Using Deep Reinforcement Learning and Multiple Subset Evaluation Strategies.

Authors :
Zhao, Linya
Tan, Kun
Wang, Xue
Ding, Jianwei
Liu, Zhaoxian
Ma, Huilin
Han, Bo
Source :
Remote Sensing; Jan2023, Vol. 15 Issue 1, p127, 23p
Publication Year :
2023

Abstract

It has been widely certified that hyperspectral images can be effectively used to monitor soil organic matter (SOM). Though numerous bands reveal more details in spectral features, information redundancy and noise interference also come accordingly. Due to the fact that, nowadays, prevailing dimensionality reduction methods targeted to hyperspectral images fail to make effective band selections, it is hard to capture the spectral features of ground objects quickly and accurately. In this paper, to solve the inefficiency and instability of hyperspectral feature selection, we proposed a feature selection framework named reinforcement learning for feature selection in hyperspectral regression (RLFSR). Specifically, the Markov Decision Process (MDP) was used to simulate the hyperspectral band selection process, and reinforcement learning agents were introduced to improve model performance. Then two spectral feature evaluation methods were introduced to find internal relationships between the hyperspectral features and thus comprehensively evaluate all hyperspectral bands aimed at the soil. The feature selection methods—RLFSR-Net and RLFSR-Cv—were based on pre-trained deep networks and cross-validation, respectively, and achieved excellent results on airborne hyperspectral images from Yitong Manchu Autonomous County in China. The feature subsets achieved the highest accuracy for most inversion models, with inversion R<superscript>2</superscript> values of 0.7506 and 0.7518, respectively. The two proposed methods showed slight differences in spectral feature extraction preferences and hyperspectral feature selection flexibilities in deep reinforcement learning. The experiments showed that the proposed RLFSR framework could better capture the spectral characteristics of SOM than the existing methods. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
161182944
Full Text :
https://doi.org/10.3390/rs15010127