Back to Search Start Over

Automatic Recognition of Road Damage Based on Lightweight Attentional Convolutional Neural Network.

Authors :
Liang, Han
Lee, Seong-Cheol
Seo, Suyoung
Source :
Sensors (14248220); Dec2022, Vol. 22 Issue 24, p9599, 23p
Publication Year :
2022

Abstract

An efficient road damage detection system can reduce the risk of road defects to motorists and road maintenance costs to traffic management authorities, for which a lightweight end-to-end road damage detection network is proposed in this paper, aiming at fast and automatic accurate identification and classification of multiple types of road damage. The proposed technique consists of a backbone network based on a combination of lightweight feature detection modules constituted with a multi-scale feature fusion network, which is more beneficial for target identification and classification at different distances and angles than other studies. An embedded lightweight attention module was also developed that can enhance feature information by assigning weights to multi-scale convolutional kernels to improve detection accuracy with fewer parameters. The proposed model generally has higher performance and fewer parameters than other representative models. According to our practice tests, it can identify many types of road damage based on the images captured by vehicle cameras and meet the real-time detection required when piggybacking on mobile systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
22
Issue :
24
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
161002465
Full Text :
https://doi.org/10.3390/s22249599