Back to Search Start Over

Biocompatible Potato-Starch Electrolyte-Based Coplanar Gate-Type Artificial Synaptic Transistors on Paper Substrates.

Authors :
Choi, Hyun-Sik
Lee, Young-Jun
Park, Hamin
Cho, Won-Ju
Source :
International Journal of Molecular Sciences; Dec2022, Vol. 23 Issue 24, p15901, 11p
Publication Year :
2022

Abstract

In this study, we propose the use of artificial synaptic transistors with coplanar-gate structures fabricated on paper substrates comprising biocompatible and low-cost potato-starch electrolyte and indium–gallium–zinc oxide (IGZO) channels. The electrical double layer (EDL) gating effect of potato-starch electrolytes enabled the emulation of biological synaptic plasticity. Frequency dependence measurements of capacitance using a metal-insulator-metal capacitor configuration showed a 1.27 μF/cm<superscript>2</superscript> at a frequency of 10 Hz. Therefore, strong capacitive coupling was confirmed within the potato-starch electrolyte/IGZO channel interface owing to EDL formation because of internal proton migration. An electrical characteristics evaluation of the potato-starch EDL transistors through transfer and output curve resulted in counterclockwise hysteresis caused by proton migration in the electrolyte; the hysteresis window linearly increased with maximum gate voltage. A synaptic functionality evaluation with single-spike excitatory post-synaptic current (EPSC), paired-pulse facilitation (PPF), and multi-spike EPSC resulted in mimicking short-term synaptic plasticity and signal transmission in the biological neural network. Further, channel conductance modulation by repetitive presynaptic stimuli, comprising potentiation and depression pulses, enabled stable modulation of synaptic weights, thereby validating the long-term plasticity. Finally, recognition simulations on the Modified National Institute of Standards and Technology (MNIST) handwritten digit database yielded a 92% recognition rate, thereby demonstrating the applicability of the proposed synaptic device to the neuromorphic system. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
23
Issue :
24
Database :
Complementary Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
160985024
Full Text :
https://doi.org/10.3390/ijms232415901