Back to Search Start Over

Finite element analysis of 3D-printed personalized titanium plates for mandibular angle fracture.

Authors :
Li, Yan
Li, Hui
Lai, Qingguo
Xue, Runqi
Zhu, Kaiwen
Deng, Yanwei
Source :
Computer Methods in Biomechanics & Biomedical Engineering; Jan2023, Vol. 26 Issue 1, p78-89, 12p
Publication Year :
2023

Abstract

This paper discussed the size of 3 D-printed personalized titanium plates that can gain maximum stability of mandibular fracture and minimize stress shielding through finite element analysis. A 3 D virtual model of mandible with mandibular angle fracture was created from the CT data of patient. 3 D-printed personalized titanium plates varying in length and thickness were designed, and finite element analysis was performed under different loading conditions and fracture healing periods. After that, the stress distribution and deformation of the mandible with gonial fracture could be observed, and the stress shielding rate could be obtained. Finally, SPSS21.0 was used for statistical analysis. The results of finite element analysis indicated that as the thickness of titanium plates and the healing time decreased, the maximum displacement increased, under a certain condition in which the pore size, the width, the hole distance and the bridge spacing were 2.0 mm, 4.0 mm, 6.0 mm, 12.0 mm, respectively. What's more, in this condition, the thicker the titanium plate and the shorter the healing time were, the higher the stress shielding was at central occlusion. When the thickness of the personalized 3 D-printed titanium plate was 1.0 mm, the maximum displacement tended to be stable and the stress shielding was minimized. It can not only improve the bone stability after tension band fixation, but also minimize the stress shielding, which is expected to expand the indications of tension band fixation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10255842
Volume :
26
Issue :
1
Database :
Complementary Index
Journal :
Computer Methods in Biomechanics & Biomedical Engineering
Publication Type :
Academic Journal
Accession number :
160968171
Full Text :
https://doi.org/10.1080/10255842.2022.2047952