Back to Search Start Over

Stepped-Carrier OFDM With a Nonlinear Hopping Pattern for Joint Radar and Communications.

Authors :
Yang, Yunji
Kang, Jong-Sung
Park, Jaehyun
Guvenc, Ismail
Kim, Hyungju
Jeong, Byung Jang
Source :
IEEE Sensors Journal; 12/15/2022, Vol. 22 Issue 24, p24619-24633, 15p
Publication Year :
2022

Abstract

In this article, a stepped-carrier orthogonal frequency-division multiplexing (OFDM) system with a nonlinear hopping pattern is developed for joint radar and communication (RadCom). In the proposed OFDM-based RadCom system, the carrier frequencies of OFDM symbols for multiple RadCom nodes are orthogonally switched to avoid interference while also maximizing the signal-to-radar interference ratio (SRIR). Differently from conventional linear stepped-carrier OFDM radar that does not consider the communication performance, we first develop a subband allocation method that considers both the radar and the communication performance for multiple RadCom nodes. Channel state information (CSI) of multiple nodes is shared with a centralized server, which then computes the subband allocation strategy that gives the maximum SRIR. Furthermore, a distributed subband allocation strategy based on stateless Q-learning is also proposed, which is suitable when the RadCom nodes do not share their CSI. We also develop the radar signal processing algorithm for range and velocity estimation when the stepped-carrier OFDM waveforms are transmitted through multiple subbands with a nonlinear hopping pattern. Through computer simulations, we confirm that the proposed stepped-carrier OFDM with the nonlinear hopping pattern exhibits a higher achievable sum rate than conventional linear stepped OFDM while not sacrificing the radar performance of target parameter estimation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1530437X
Volume :
22
Issue :
24
Database :
Complementary Index
Journal :
IEEE Sensors Journal
Publication Type :
Academic Journal
Accession number :
160906195
Full Text :
https://doi.org/10.1109/JSEN.2022.3219244