Back to Search Start Over

Reverse Thinking: The Logical System Research Method of Urban Thermal Safety Pattern Construction, Evaluation, and Optimization.

Authors :
Hu, Chunguang
Li, He
Source :
Remote Sensing; Dec2022, Vol. 14 Issue 23, p6036, 19p
Publication Year :
2022

Abstract

The acceleration of urbanization has significantly impacted the changing regional thermal environment, leading to a series of ecological and environment-related problems. A scientific evaluation of the urban thermal security pattern (TSPurban) strongly benefits the planning and layout of sustainable development and the construction of comfortable human settlements. To analyze the characteristics of the TSPurban under cross-regional differences and provide targeted solutions to mitigate the urban heat island effect in later stages, the logical system research framework of the TSPurban based on the "construction–evaluation–optimization" model was explored using reverse thinking. This study selected the Wuhan metropolitan area in China as the research object. First, a morphological spatial pattern analysis (MSPA) model was used to extract the top 30 core heat island patches, and Conefor 2.6 software was used for connection analysis to evaluate their importance. Second, based on the characteristics of various land cover types, the friction (cost) map of surface urban heat island (SUHI) diffusion was simulated. The spatial attributes of the heat island resistance surface were examined using a standard deviation ellipse and hot spot analysis. Finally, this paper used circuit theory to find 56 low-cost heat island links (corridors) and circuit scape software to find widely distributed vital nodes. The optimization of the TSPurban network was then investigated using a reverse thinking process. Heat island patches, corridors, and vital nodes are among the crucial components of the TSPurban. By obstructing corridor links and disturbing important nodes, it is possible to appropriately and proficiently reduce the TSPurban network's connection efficiency and stability, which will have a positive influence on regional climate mitigation and the heat island effect. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
23
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
160737463
Full Text :
https://doi.org/10.3390/rs14236036