Back to Search Start Over

Large-Scale Fuzzy Least Squares Twin SVMs for Class Imbalance Learning.

Authors :
Ganaie, M. A.
Tanveer, M.
Lin, Chin-Teng
Source :
IEEE Transactions on Fuzzy Systems; Nov2022, Vol. 30 Issue 11, p4815-4827, 13p
Publication Year :
2022

Abstract

Twin support vector machines (TSVMs) have been successfully employed for binary classification problems. With the advent of machine learning algorithms, data have proliferated and there is a need to handle or process large-scale data. TSVMs are not successful in handling large-scale data due to the following: 1) the optimization problem solved in the TSVM needs to calculate large matrix inverses, which makes it an ineffective choice for large-scale problems; 2) the empirical risk minimization principle is employed in the TSVM and, hence, may suffer due to overfitting; and 3) the Wolfe dual of TSVM formulation involves positive-semidefinite matrices, and hence, singularity issues need to be resolved manually. Keeping in view the aforementioned shortcomings, in this article, we propose a novel large-scale fuzzy least squares TSVM for class imbalance learning (LS-FLSTSVM-CIL). We formulate the LS-FLSTSVM-CIL such that the proposed optimization problem ensures that: 1) no matrix inversion is involved in the proposed LS-FLSTSVM-CIL formulation, which makes it an efficient choice for large-scale problems; 2) the structural risk minimization principle is implemented, which avoids the issues of overfitting and results in better performance; and 3) the Wolfe dual formulation of the proposed LS-FLSTSVM-CIL model involves positive-definite matrices. In addition, to resolve the issues of class imbalance, we assign fuzzy weights in the proposed LS-FLSTSVM-CIL to avoid bias in dominating the samples of class imbalance problems. To make it more feasible for large-scale problems, we use an iterative procedure known as the sequential minimization principle to solve the objective function of the proposed LS-FLSTSVM-CIL model. From the experimental results, one can see that the proposed LS-FLSTSVM-CIL demonstrates superior performance in comparison to baseline classifiers. To demonstrate the feasibility of the proposed LS-FLSTSVM-CIL on large-scale classification problems, we evaluate the classification models on the large-scale normally distributed clustered (NDC) dataset. To demonstrate the practical applications of the proposed LS-FLSTSVM-CIL model, we evaluate it for the diagnosis of Alzheimer’s disease and breast cancer disease. Evaluation on NDC datasets shows that the proposed LS-FLSTSVM-CIL has feasibility in large-scale problems as it is fast in comparison to the baseline classifiers. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10636706
Volume :
30
Issue :
11
Database :
Complementary Index
Journal :
IEEE Transactions on Fuzzy Systems
Publication Type :
Academic Journal
Accession number :
160687924
Full Text :
https://doi.org/10.1109/TFUZZ.2022.3161729