Back to Search
Start Over
Similarity-Aware CNN for Efficient Video Recognition at the Edge.
- Source :
- IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems; Nov2022, Vol. 41 Issue 11, p4901-4914, 14p
- Publication Year :
- 2022
-
Abstract
- Convolutional neural networks (CNNs) often extract similar features from successive video frames due to having identical appearances. In contrast, conventional CNNs for video recognition process individual frames with a fixed computational effort. Each video frame is independently processed, resulting in numerous redundant computations and an inefficient use of limited energy resources, particularly for edge computing applications. To alleviate the high energy requirements associated with video frame processing, this article presented similarity-aware CNNs that recognize similar feature pixels across frames and avoid computations on them. First, with a loss of less than 1% in recognition accuracy, a proposed similarity-aware quantization technique increases the average number of unchanged feature pixels across frame pairs by up to 85%. Then, a proposed similarity-aware dataflow improves energy consumption by minimizing redundant computations and memory accesses across frame pairs. According to simulation experiments, the proposed dataflow decreases the energy consumed by video frame processing by up to 30%. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 02780070
- Volume :
- 41
- Issue :
- 11
- Database :
- Complementary Index
- Journal :
- IEEE Transactions on Computer-Aided Design of Integrated Circuits & Systems
- Publication Type :
- Academic Journal
- Accession number :
- 160652629
- Full Text :
- https://doi.org/10.1109/TCAD.2021.3136815