Back to Search Start Over

Time-Varying Channel Estimation Scheme for Uplink MU-MIMO in 6G Systems.

Authors :
Wang, Jianhao
Zhang, Wensheng
Chen, Yunfei
Liu, Zhi
Sun, Jian
Wang, Cheng-Xiang
Source :
IEEE Transactions on Vehicular Technology; Nov2022, Vol. 71 Issue 11, p11820-11831, 12p
Publication Year :
2022

Abstract

Channel estimation is a challenging issue for millimeter wave (mmWave) and massive multiple-input multiple-output (MIMO) in the future sixth generation (6G) wireless systems, where the conventional estimation schemes may fail to track the fast varying channels, especially in high-speed mobile scenarios. In this paper, a novel tensor-based uplink channel estimation scheme is proposed for multi-user MIMO (MU-MIMO) systems over time-varying channels. In the proposed scheme, a low-overhead pilot transmission scheme is designed to track the varying channel. The received uplink signal at the base station (BS) is formulated as a third-order tensor which admits a CANDECOMP/PARAFAC (CP) model. The CP decomposition issue is then solved using blind matrix decomposition, in which the special structures of signals in the time dimension and the matrix subspace are utilized. By exploiting low-rank structure of the signal tensor, the channel parameters (angles of arrival/departure, path gains, and Doppler shifts) are estimated from the factor matrices. Moreover, the proposed scheme is theoretically analyzed and it is guaranteed with low pilot overhead. Simulation results verify that the proposed scheme can outperform the compressed sensing (CS) based scheme and the iteration-based scheme in terms of accuracy and stability. The uniqueness of the proposed scheme is also verified in our simulation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189545
Volume :
71
Issue :
11
Database :
Complementary Index
Journal :
IEEE Transactions on Vehicular Technology
Publication Type :
Academic Journal
Accession number :
160652312
Full Text :
https://doi.org/10.1109/TVT.2022.3192902