Back to Search Start Over

Identifying Structural Holes for Sentiment Classification.

Authors :
Xie, Zheng
Liu, Guannan
Qu, Jinming
Wu, Junjie
Li, Hong
Source :
Information Systems Frontiers; Oct2022, Vol. 24 Issue 5, p1735-1751, 17p, 2 Diagrams, 6 Charts, 2 Graphs
Publication Year :
2022

Abstract

The prevalence of online user-generated content has attracted great interest in textual sentiment analysis, which provides a low-cost yet effective way to discern consumers and markets. A mainstream of sentiment analysis is to construct a classification model with Bag-of-Words (BoW) features, but the large vocabulary base and skewed distribution of term frequency consistently pose research challenges, which is made even worse by the limited valid sentiment labels. In light of this, in this paper, we propose a novel method called Structural Holes based Sentiment Classifier (SHSC) for BoW-based sentiment classification. The key to SHSC is to reinforce the classification contribution of semantically rich words with clear-cut sentiment polarity. To this end, a word co-occurrence network is carefully constructed to represent both high and low frequency words. The work to find classification-inefficient words is then transformed into the identification of so-called bridge nodes that occupy the positions of structural holes in the network. Two interesting measures, i.e., information advantage rank and control advantage weight, are then designed elaborately for this purpose, which are based on the proposed sentiment-label propagation and short-path computation algorithms, respectively. SHSC finally feeds this information as the key regularizers into a simple regression model to guide parametric learning. Extensive experiments on real-world text datasets demonstrate the advantage of our SHSC model over competitive benchmarks, particularly when sentiment labels are scarce. The effectiveness of uncovering structural holes for sentiment classification is also carefully verified with some robustness checks and demonstration cases. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13873326
Volume :
24
Issue :
5
Database :
Complementary Index
Journal :
Information Systems Frontiers
Publication Type :
Academic Journal
Accession number :
160579520
Full Text :
https://doi.org/10.1007/s10796-021-10185-x