Back to Search Start Over

A Machine-Learning Approach to Intertidal Mudflat Mapping Combining Multispectral Reflectance and Geomorphology from UAV-Based Monitoring.

Authors :
Brunier, Guillaume
Oiry, Simon
Lachaussée, Nicolas
Barillé, Laurent
Le Fouest, Vincent
Méléder, Vona
Source :
Remote Sensing; Nov2022, Vol. 14 Issue 22, p5857, 23p
Publication Year :
2022

Abstract

Remote sensing is a relevant method to map inaccessible areas, such as intertidal mudflats. However, image classification is challenging due to spectral similarity between microphytobenthos and oyster reefs. Because these elements are strongly related to local geomorphic features, including biogenic structures, a new mapping method has been developed to overcome the current obstacles. This method is based on unmanned aerial vehicles (UAV), RGB, and multispectral (four bands: green, red, red-edge, and near-infrared) surveys that combine high spatial resolution (e.g., 5 cm pixel), geomorphic mapping, and machine learning random forest (RF) classification. A mudflat on the Atlantic coast of France (Marennes-Oléron bay) was surveyed based on this method and by using the structure from motion (SfM) photogrammetric approach to produce orthophotographs and digital surface models (DSM). Eight classes of mudflat surface based on indexes, such as NDVI and spectral bands normalised to NIR, were identified either on the whole image (i.e., standard RF classification) or after segmentation into five geomorphic units mapped from DSM (i.e., geomorphic-based RF classification). The classification accuracy was higher with the geomorphic-based RF classification (93.12%) than with the standard RF classification (73.45%), showing the added value of combining topographic and radiometric data to map soft-bottom intertidal areas and the user-friendly potential of this method in applications to other ecosystems, such as wetlands or peatlands. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
22
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
160465526
Full Text :
https://doi.org/10.3390/rs14225857