Back to Search Start Over

Estimating Rainfall from Surveillance Audio Based on Parallel Network with Multi-Scale Fusion and Attention Mechanism.

Authors :
Chen, Mingzheng
Wang, Xing
Wang, Meizhen
Liu, Xuejun
Wu, Yong
Wang, Xiaochu
Source :
Remote Sensing; Nov2022, Vol. 14 Issue 22, p5750, 17p
Publication Year :
2022

Abstract

Rainfall data have a profound significance for meteorology, climatology, hydrology, and environmental sciences. However, existing rainfall observation methods (including ground-based rain gauges and radar-/satellite-based remote sensing) are not efficient in terms of spatiotemporal resolution and cannot meet the needs of high-resolution application scenarios (urban waterlogging, emergency rescue, etc.). Widespread surveillance cameras have been regarded as alternative rain gauges in existing studies. Surveillance audio, through exploiting their nonstop use to record rainfall acoustic signals, should be considered a type of data source to obtain high-resolution and all-weather data. In this study, a method named parallel neural network based on attention mechanisms and multi-scale fusion (PNNAMMS) is proposed for automatically classifying rainfall levels by surveillance audio. The proposed model employs a parallel dual-channel network with spatial channel extracting the frequency domain correlation, and temporal channel capturing the time-domain continuity of the rainfall sound. Additionally, attention mechanisms are used on the two channels to obtain significant spatiotemporal elements. A multi-scale fusion method was adopted to fuse different scale features in the spatial channel for more robust performance in complex surveillance scenarios. In experiments showed that our method achieved an estimation accuracy of 84.64% for rainfall levels and outperformed previously proposed methods. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
22
Database :
Complementary Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
160465419
Full Text :
https://doi.org/10.3390/rs14225750