Back to Search Start Over

Radiation dose estimation with time-since-exposure uncertainty using the γ-H2AX biomarker.

Authors :
Młynarczyk, Dorota
Puig, Pedro
Armero, Carmen
Gómez-Rubio, Virgilio
Barquinero, Joan F.
Pujol-Canadell, Mònica
Source :
Scientific Reports; 11/18/2022, Vol. 12 Issue 1, p1-8, 8p
Publication Year :
2022

Abstract

To predict the health effects of accidental or therapeutic radiation exposure, one must estimate the radiation dose that person received. A well-known ionising radiation biomarker, phosphorylated γ -H2AX protein, is used to evaluate cell damage and is thus suitable for the dose estimation process. In this paper, we present new Bayesian methods that, in contrast to approaches where estimation is carried out at predetermined post-irradiation times, allow for uncertainty regarding the time since radiation exposure and, as a result, produce more precise results. We also use the Laplace approximation method, which drastically cuts down on the time needed to get results. Real data are used to illustrate the methods, and analyses indicate that the models might be a practical choice for the γ -H2AX biomarker dose estimation process. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Complementary Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
160307961
Full Text :
https://doi.org/10.1038/s41598-022-24331-1