Back to Search Start Over

A Modified Multiparameter Linear Programming Method for Efficient Power System Reliability Assessment.

Authors :
Zuo, Jing
Peng, Sui
Yang, Yan
Li, Zuohong
Zuo, Zhengmin
Yu, Hao
Lin, Yong
Source :
Processes; Nov2022, Vol. 10 Issue 11, p2188, 15p
Publication Year :
2022

Abstract

Power systems face adequacy risks because of the high integration of renewable energy. It is urgent to develop efficient methods for power system operational reliability assessment. Conventional power system reliability assessment methods cannot achieve real-time assessment of system risk because of the high computational complexity and long calculation time. The high computational complexity is mainly caused by a large number of optimal power flow (OPF) calculations. To reduce the computational complexity, this paper transfers the optimal power flow model as a multiparameter linear programming model. Then, the optimal power flow can be obtained by linear calculations. Furthermore, this paper proposes a state reduction method considering the importance index of transmission lines for further improving the calculation efficiency. Case studies are carried out on IEEE standard systems and a provincial power grid in China. Compared with the conventional reliability assessment method, the reliability assessment efficiency of the proposed method increases by 10–40 times, and the assessment error is less than 1%. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22279717
Volume :
10
Issue :
11
Database :
Complementary Index
Journal :
Processes
Publication Type :
Academic Journal
Accession number :
160220593
Full Text :
https://doi.org/10.3390/pr10112188