Back to Search Start Over

Impact of the Morphology of Electrospun Lignin/Ethylcellulose Nanostructures on Their Capacity to Thicken Castor Oil.

Authors :
Borrego, María
Martín-Alfonso, José E.
Valencia, Concepción
Sánchez, M. Carmen
Franco, José M.
Source :
Polymers (20734360); Nov2022, Vol. 14 Issue 21, p4741, 14p
Publication Year :
2022

Abstract

This study reports on a novel strategy for manufacturing thickened gel-like castor oil formulations by dispersing electrospun lignin/ethylcellulose nanostructures. These thickened formulations were rheologically and tribologically evaluated with the aim of being proposed as alternative ecofriendly lubricating greases. Low-sulfonate kraft lignin (LSL) and ethylcellulose (EC) were dissolved in a DMAc:THF mixture at different concentrations (8, 10, and 15 wt.%) and LSL:EC ratios (50:50, 70:30, and 90:10) and subjected to electrospinning. The resulting electrospun nanostructures were morphologically characterized. EC acting as the cospinning polymer improved both LSL spinnability and the oil structuring ability. Solutions with a high lignin content achieved microsized particles connected by fibrils, whereas solutions with a high EC content (50:50 ratio) and LSL/EC total concentration (10 and 15 wt.%) yielded beaded or bead-free nanofibers, due to enhanced extensional viscoelastic properties and nonNewtonian characteristics. The gel-like properties of electrospun nanostructure dispersions in castor oil were strengthened with the nanostructure concentration and the EC:LSL ratio, as a result of the formation of a more interconnected fiber network. The oleodispersions studied exhibited a satisfactory frictional response in a tribological contact, with friction coefficient values that were comparable to those achieved with traditional lithium-lubricating greases. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
14
Issue :
21
Database :
Complementary Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
160205930
Full Text :
https://doi.org/10.3390/polym14214741