Back to Search Start Over

Numerical study of opposed zero-net-mass-flow jet-induced erythrocyte mechanoporation.

Numerical study of opposed zero-net-mass-flow jet-induced erythrocyte mechanoporation.

Authors :
Liu, Xinyue
Ai, Jinfang
Xie, Jun
Hu, Guohui
Source :
Applied Mathematics & Mechanics; Nov2022, Vol. 43 Issue 11, p1763-1776, 14p
Publication Year :
2022

Abstract

With the advantages of biosafety and efficiency, increasing attention has been paid to the devices for gene and macromolecular drug delivery based on mechanoporation. The transient pore formation on the cell membrane allows cargo transportation when the membrane areal strain is beyond the critical pore value and below the lysis tension threshold. Based on this principle, we propose a method to apply the proper fluid stress on cells moving in a microchannel under the action of zero-net-mass-flux (ZNMF) jets. In this study, an immersed finite element method (IFEM) is adopted to simulate the interaction between the cells and the fluid fields so as to investigate the cell movement and deformation in this mechanoporation system. To evaluate the efficiency of the cargo delivery, a pore integral is defined as the mean pore rate when the cell passes through the jet region. By analyzing the effects of the parameters, including the pressure gradient along the microchannel, the jet amplitude, and the jet frequency, on the pore integrals, a group of optimized parameters for cargo delivery efficiency are obtained. Additionally, the stability and safety of this system are analyzed in detail. These results are helpful in designing the mechanoporation devices and improving their efficiency of drug delivery. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02534827
Volume :
43
Issue :
11
Database :
Complementary Index
Journal :
Applied Mathematics & Mechanics
Publication Type :
Academic Journal
Accession number :
160074997
Full Text :
https://doi.org/10.1007/s10483-022-2931-6