Back to Search Start Over

Hybrid Models for Breast Cancer Detection via Transfer Learning Technique.

Authors :
Singh, Sukhendra
Rawat, Sur Singh
Gupta, Manoj
Tripathi, B. K.
Alanzi, Faisal
Majumdar, Arnab
Khuwuthyakorn, Pattaraporn
Thinnukool, Orawit
Source :
Computers, Materials & Continua; 2023, Vol. 74 Issue 2, p3063-3083, 21p
Publication Year :
2023

Abstract

Currently, breast cancer has been amajor cause of deaths in women worldwide and the World Health Organization (WHO) has confirmed this. The severity of this disease can be minimized to the large extend, if it is diagnosed properly at an early stage of the disease. Therefore, the proper treatment of a patient having cancer can be processed in better way, if it can be diagnosed properly as early as possible using the better algorithms. Moreover, it has been currently observed that the deep neural networks have delivered remarkable performance for detecting cancer in histopathological images of breast tissues. To address the above said issues, this paper presents a hybrid model using the transfer learning to study the histopathological images, which help in detection and rectification of the disease at a low cost. Extensive dataset experiments were carried out to validate the suggested hybrid model in this paper. The experimental results show that the proposed model outperformed the baseline methods, with F-scores of 0.81 for DenseNet+Logistic Regression hybrid model, (F-score: 0.73) for Visual Geometry Group (VGG)+Logistic Regression hybrid model, (F-score: 0.74) for VGG+Random Forest, (F-score: 0.79) for DenseNet+Random Forest, and (F-score: 0.79) for VGG+Densenet+Logistic Regression hybrid model on the dataset of histopathological images. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
15462218
Volume :
74
Issue :
2
Database :
Complementary Index
Journal :
Computers, Materials & Continua
Publication Type :
Academic Journal
Accession number :
160062019
Full Text :
https://doi.org/10.32604/cmc.2023.032363