Back to Search Start Over

Early tension regulation coupled to surface myomerger is necessary for the primary fusion of C2C12 myoblasts.

Authors :
Chakraborty, Madhura
Sivan, Athul
Biswas, Arikta
Sinha, Bidisha
Source :
Frontiers in Physiology; 10/14/2022, Vol. 13, p1-17, 17p
Publication Year :
2022

Abstract

Here, we study the time-dependent regulation of fluctuation-tension during myogenesis and the role of the fusogen, myomerger. We measure nanometric height fluctuations of the basal membrane of C2C12 cells after triggering differentiation. Fusion of cells increases fluctuation-tension but prefers a transient lowering of tension (at ~2-24 h). Cells fail to fuse if early tension is continuously enhanced by methyl-β-cyclodextrin (MβCD). Perturbing tension regulation also reduces fusion. During this pre-fusion window, cells that finally differentiate usually display lower tension than other non-fusing cells, validating early tension states to be linked to fate decision. Early tension reduction is accompanied by low but gradually increasing level of the surface myomerger. Locally too, regions with higher myomerger intensity display lower tension. However, this negative correlation is lost in the early phase by MβCD-based cholesterol depletion or later as differentiation progresses. We find that with tension and surface-myomerger's enrichment under these conditions, myomerger clusters become pronouncedly diffused. We, therefore, propose that low tension aided by clustered surface-myomerger at the early phase is crucial for fusion and can be disrupted by cholesterol-reducing molecules, implying the potential to affect muscle health. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1664042X
Volume :
13
Database :
Complementary Index
Journal :
Frontiers in Physiology
Publication Type :
Academic Journal
Accession number :
159946362
Full Text :
https://doi.org/10.3389/fphys.2022.976715