Back to Search
Start Over
Sub-Block Urban Function Recognition with the Integration of Multi-Source Data.
- Source :
- Sensors (14248220); Oct2022, Vol. 22 Issue 20, pN.PAG-N.PAG, 22p
- Publication Year :
- 2022
-
Abstract
- The recognition of urban functional areas (UFAs) is of great significance for the understanding of urban structures and urban planning. Due to the limitation of data sources, early research was characterized by problems such as singular data, incomplete results, and inadequate consideration of the socioeconomic environment. The development of multi-source big data brings new opportunities for dynamic recognition of UFAs. In this study, a sub-block function recognition framework that integrates multi-feature information from building footprints, point-of-interest (POI) data, and Landsat images is proposed to classify UFAs at the sub-block level using a random forest model. The recognition accuracies of single- and mixed-function areas in the core urban area of Guangzhou, China, obtained by this framework are found to be significantly higher than those of other methods. The overall accuracy (OA) of single-function areas is 82%, which is 8–36% higher than that of other models. The research conclusions show that the introduction of the three-dimensional (3D) features of buildings and finer land cover features can improve the recognition accuracy of UFAs. The proposed method that uses open access data and achieves comprehensive results provides a more practical solution for the recognition of UFAs. [ABSTRACT FROM AUTHOR]
- Subjects :
- RANDOM forest algorithms
URBAN planning
CITIES & towns
LANDSAT satellites
Subjects
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 22
- Issue :
- 20
- Database :
- Complementary Index
- Journal :
- Sensors (14248220)
- Publication Type :
- Academic Journal
- Accession number :
- 159941552
- Full Text :
- https://doi.org/10.3390/s22207862