Back to Search Start Over

Metabolic engineering strategies to produce medium-chain oleochemicals via acyl-ACP:CoA transacylase activity.

Authors :
Yan, Qiang
Cordell, William T.
Jindra, Michael A.
Courtney, Dylan K.
Kuckuk, Madeline K.
Chen, Xuanqi
Pfleger, Brian F.
Source :
Nature Communications; 10/23/2022, Vol. 13 Issue 1, p1-10, 10p
Publication Year :
2022

Abstract

Microbial lipid metabolism is an attractive route for producing oleochemicals. The predominant strategy centers on heterologous thioesterases to synthesize desired chain-length fatty acids. To convert acids to oleochemicals (e.g., fatty alcohols, ketones), the narrowed fatty acid pool needs to be reactivated as coenzyme A thioesters at cost of one ATP per reactivation - an expense that could be saved if the acyl-chain was directly transferred from ACP- to CoA-thioester. Here, we demonstrate such an alternative acyl-transferase strategy by heterologous expression of PhaG, an enzyme first identified in Pseudomonads, that transfers 3-hydroxy acyl-chains between acyl-carrier protein and coenzyme A thioester forms for creating polyhydroxyalkanoate monomers. We use it to create a pool of acyl-CoA's that can be redirected to oleochemical products. Through bioprospecting, mutagenesis, and metabolic engineering, we develop three strains of Escherichia coli capable of producing over 1 g/L of medium-chain free fatty acids, fatty alcohols, and methyl ketones. Microbial production of oleochemicals involves strategies of expressing thioesterase to narrow the substrate pool for the termination enzyme at the expense of one ATP. Here, the authors developed an alternative energy-efficient strategy to use of an acyl-ACP transacylase to produce medium chain oleochemicals in E. coli. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
13
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
159896913
Full Text :
https://doi.org/10.1038/s41467-022-29218-3