Back to Search
Start Over
¹H-NMR Metabolic Profiling, Antioxidant Activity, and Docking Study of Common Medicinal Plant-Derived Honey.
- Source :
- Antioxidants; Oct2022, Vol. 11 Issue 10, pN.PAG-N.PAG, 18p
- Publication Year :
- 2022
-
Abstract
- The purpose of this investigation was to determine ¹H-NMR profiling and antioxidant activity of the most common types of honey, namely, citrus honey (HC1) (Morcott tangerine L. and Jaffa orange L.), marjoram honey (HM1) (Origanum majorana L.), and clover honey (HT1) (Trifolium alexandrinum L.), compared to their secondary metabolites (HC2, HM2, HT2, respectively). By using a ¹H-NMR-based metabolomic technique, PCA, and PLS-DA multivariate analysis, we found that HC2, HM2, HC1, and HM1 were clustered together. However, HT1 and HT2 were quite far from these and each other. This indicated that HC1, HM1, HC2, and HM2 have similar chemical compositions, while HT1 and HT2 were unique in their chemical profiles. Antioxidation potentials were determined colorimetrically for scavenging activities against DPPH, ABTS, ORAC, 5-LOX, and metal chelating activity in all honey extract samples and their secondary metabolites. Our results revealed that HC2 and HM2 possessed more antioxidant activities than HT2 in vitro. HC2 demonstrated the highest antioxidant effect in all assays, followed by HM2 (DPPH assay: IC<subscript>50</subscript> 2.91, 10.7 μg/mL; ABTS assay: 431.2, 210.24 at 50 ug/mL Trolox equivalent; ORAC assay: 259.5, 234.8 at 50 ug/mL Trolox equivalent; 5-LOX screening assay/IC<subscript>50</subscript>: 2.293, 6.136 ug/mL; and metal chelating activity at 50 ug/mL: 73.34526%, 63.75881% inhibition). We suggest that the presence of some secondary metabolites in HC and HM, such as hesperetin, linalool, and caffeic acid, increased the antioxidant activity in citrus and marjoram compared to clover honey. [ABSTRACT FROM AUTHOR]
- Subjects :
- ORIGANUM
METABOLITES
CAFFEIC acid
HONEY
ANTIOXIDANTS
MULTIVARIATE analysis
Subjects
Details
- Language :
- English
- ISSN :
- 20763921
- Volume :
- 11
- Issue :
- 10
- Database :
- Complementary Index
- Journal :
- Antioxidants
- Publication Type :
- Academic Journal
- Accession number :
- 159870160
- Full Text :
- https://doi.org/10.3390/antiox11101880