Back to Search
Start Over
Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks.
- Source :
- Nature Communications; 10/13/2022, Vol. 13 Issue 1, p1-9, 9p
- Publication Year :
- 2022
-
Abstract
- Silicon photonics is promising for artificial neural networks computing owing to its superior interconnect bandwidth, low energy consumption and scalable fabrication. However, the lack of silicon-integrated and monitorable optical neurons limits its revolution in large-scale artificial neural networks. Here, we highlight nonlinear germanium-silicon photodiodes to construct on-chip optical neurons and a self-monitored all-optical neural network. With specifically engineered optical-to-optical and optical-to-electrical responses, the proposed neuron merges the all-optical activation and non-intrusive monitoring functions in a compact footprint of 4.3 × 8 μm<superscript>2</superscript>. Experimentally, a scalable three-layer photonic neural network enables in situ training and learning in object classification and semantic segmentation tasks. The performance of this neuron implemented in a deep-scale neural network is further confirmed via handwriting recognition, achieving a high accuracy of 97.3%. We believe this work will enable future large-scale photonic intelligent processors with more functionalities but simplified architecture. Large-scale silicon-based integrated artificial neural networks lack of silicon-integrated optical neurons. Here, Yu et al, report a self-monitored all-optical neural network enabled by nonlinear germanium-silicon photodiodes, making the photonic neural network more versatile and compact. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 13
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- 159661954
- Full Text :
- https://doi.org/10.1038/s41467-022-33877-7