Back to Search
Start Over
Instantaneous stomatal optimization results in suboptimal carbon gain due to legacy effects.
- Source :
- Plant, Cell & Environment; Nov2022, Vol. 45 Issue 11, p3189-3204, 16p
- Publication Year :
- 2022
-
Abstract
- In this stochastic rainfall scenario, we can exchange the long-term average in Equation 3 with the ensemble average so that the long-term mean net carbon gain rate defined with Equation 3 becomes (Lu et al., 2016) 10 HT <math altimg="urn:x-wiley:01407791:media:pce14427:pce14427-math-0059" display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mover accent="true"><mi>B</mi><mo></mo></mover><mrow><mo>(</mo><msub><mi>g</mi><mi mathvariant="normal">s</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><msubsup><mo> </mo><mn>0</mn><mn>1</mn></msubsup><mi>B</mi><mrow><mo>(</mo><msub><mi>g</mi><mi mathvariant="normal">s</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>,</mo><mi>s</mi><mo>)</mo></mrow><mi>p</mi><mrow><mo>(</mo><msub><mi>g</mi><mi mathvariant="normal">s</mi></msub><mrow><mo>(</mo><mi>s</mi><mo>)</mo></mrow><mo>,</mo><mi>s</mi><mo>)</mo></mrow><mi mathvariant="italic">ds</mi><mo>.</mo></mrow><annotation encoding="application/x-tex"> $\bar{B}({g} {{\rm{s}}}(s))={\int } {0}^{1}B({g} {{\rm{s}}}(s),s)p({g} {{\rm{s}}}(s),s){ds}.$</annotation></semantics></math> ht Implementation In the single dry-down scenario (but not in the stochastic rainfall scenario), the simulations were run in discrete time with all the state variables updated daily. Stomatal regulation is a cornerstone process that links the exchange of carbon and water between vegetation and atmosphere, and how it is affected by plant water stress. [Extracted from the article]
Details
- Language :
- English
- ISSN :
- 01407791
- Volume :
- 45
- Issue :
- 11
- Database :
- Complementary Index
- Journal :
- Plant, Cell & Environment
- Publication Type :
- Academic Journal
- Accession number :
- 159630406
- Full Text :
- https://doi.org/10.1111/pce.14427