Back to Search
Start Over
Production and Conjugation of Truncated Recombinant Diphtheria Toxin to VEGFR-2 Specific Nanobody and Evaluation of its Cytotoxic Effect on PC-3 Cell Line.
- Source :
- Molecular Biotechnology; Nov2022, Vol. 64 Issue 11, p1218-1226, 9p
- Publication Year :
- 2022
-
Abstract
- Immunotoxins have represented a great potency in targeted therapeutics to encounter tumors. They consist of a protein toxin conjugated to a targeting moiety, which recognizes a specific antigen on surface of cancer cells and accordingly induces cell death by toxin segment. The targeting part could be a nanobody, which is a group of antibodies composed of an only functional single variable heavy chain (VHH).Therefore, this study was done to produce an immunotoxin (VGRNb-DT) by chemical conjugation of a truncated diphtheria toxin moiety to an anti-vascular endothelial growth factor receptor 2(VEGFR-2) nanobody, and to identify effectiveness of immunotoxin in recognizing the VEGFR-2- positive cancer cells and inhibiting cell growth and survival. Diphtheria toxin was expressed and purified by nickel affinity chromatography, and accordingly, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot analysis confirmed its expression. Function of heterobifunctional crosslinkers, Sulfo-SMCC (sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate), and SATP (N-succinimidyl-S- acetylthiopropionate) for bioconjugation purposes was acknowledged by cation exchange high-performance liquid chromatography (HPLC). Cytotoxicity of immunotoxin was evaluated on the VEGFR-2 positive PC-3 cell line by MTT assay. Overexpression of VEGFR-2 in the PC-3 cell line allowed immunotoxin to recognize them by anti-VEGFR-2 nanobodies. The concentrations above 5 μg/ml represented a significant decrease in cell survival rate in PC-3 cells compared to HEK293 cells (VEGFR-2 negative cells) as controls.VGRNb-DT demonstrated a successful bioconjugation; furthermore, variable concentrations were correlated with cell death in prostate cancer PC-3 cells. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10736085
- Volume :
- 64
- Issue :
- 11
- Database :
- Complementary Index
- Journal :
- Molecular Biotechnology
- Publication Type :
- Academic Journal
- Accession number :
- 159355453
- Full Text :
- https://doi.org/10.1007/s12033-022-00485-1