Back to Search
Start Over
Enhancement of photosynthesis efficiency and yield of strawberry (Fragaria ananassa Duch.) plants via LED systems .
- Source :
- Frontiers in Plant Science; 9/9/2022, Vol. 13, p1-17, 17p
- Publication Year :
- 2022
-
Abstract
- Due to advances in the industrial development of light-emitting diodes (LEDs), much research has been conducted in recent years to get a better understanding of how plants respond to these light sources. This study investigated the effects of different LED-based light regimes on strawberry plant development and performance. The photosynthetic pigment content, biochemical constituents, and growth characteristics of strawberry plants were investigated using a combination of different light intensities (150, 200, and 250 μmol m<superscript>−2</superscript> s<superscript>−1</superscript> ), qualities (red, green, and blue LEDs), and photoperiods (14/10 h, 16/8 h, and 12/12 h light/dark cycles) compared to the same treatment with white fluorescent light. Plant height, root length, shoot fresh and dry weight, chlorophyll a, total chlorophyll/carotenoid content, and most plant yield parameters were highest when illuminated with LM7 [intensity (250 μmol m<superscript>−2</superscript> s<superscript>−1</superscript> ) + quality (70% red/30% blue LED light combination) + photoperiod (16/8 h light/dark cycles)]. The best results for the effective quantum yield of PSII photochemistry Y(II), photochemical quenching coefficient (qP), and electron transport ratio (ETR) were obtained with LM8 illumination [intensity (250 μmol m<superscript>−2</superscript> s<superscript>−1</superscript> ) + quality (50% red/20% green/30% blue LED light combination) + photoperiod (12 h/12 h light/dark cycles)]. We conclude that strawberry plants require prolonged and high light intensities with a high red-light component for maximum performance and biomass production. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 1664462X
- Volume :
- 13
- Database :
- Complementary Index
- Journal :
- Frontiers in Plant Science
- Publication Type :
- Academic Journal
- Accession number :
- 159340027
- Full Text :
- https://doi.org/10.3389/fpls.2022.918038