Back to Search Start Over

Dissociating effects of error size, training duration, and amount of adaptation on the ability to retain motor memories.

Authors :
Alhussein, Laith
Hosseini, Eghbal A.
Nguyen, Katrina P.
Smith, Maurice A.
Joiner, Wilsaan M.
Source :
Journal of Neurophysiology; Nov2019, Vol. 122 Issue 5, p2027-2042, 16p, 3 Graphs
Publication Year :
2019

Abstract

Extensive computational and neurobiological work has focused on how the training schedule, i.e., the duration and rate at which an environmental disturbance is presented, shapes the formation of motor memories. If long-lasting benefits are to be derived from motor training, however, retention of the performance improvements gained during practice is essential. Thus a better understanding of mechanisms that promote retention could lead to the design of more effective training procedures. The few studies that have investigated how retention depends on the training schedule have suggested that the gradual exposure of a perturbation leads to improved retention of motor memory compared with an abrupt exposure. However, several of these previous studies showed small effects, and although some controlled the training duration and others the level of learning, none have controlled both. In the present study we disambiguated both of these effects from exposure rate by systematically varying the duration of training, type of trained dynamics, and exposure rate for these dynamics in human force-field adaptation. After controlling for both training duration and the amount of learning, we found essentially identical retention when comparing gradual and abrupt training for two different types of force-field dynamics. By contrast, we found that retention was markedly higher for long-duration compared with short-duration training for both types of dynamics. These results demonstrate that the duration of training has a far greater effect on the retention of motor memory than the exposure rate during training. We show that a multirate learning model provides a computational mechanism for these findings. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00223077
Volume :
122
Issue :
5
Database :
Complementary Index
Journal :
Journal of Neurophysiology
Publication Type :
Academic Journal
Accession number :
159320166
Full Text :
https://doi.org/10.1152/jn.00387.2018